
CSCI 1100 — Computer Science 1
Homework 6

Files, Sets and Document Analysis

Overview

This homework is worth 100 points total toward your overall homework grade. It is due Thursday,
March 21, 2024 at 11:59:59 pm. As usual, there will be a mix of autograded points, instructor test
case points, and TA graded points. There is just one “part” to this homework.

See the handout for Submission Guidelines and Collaboration Policy for a discussion on grading
and on what is considered excessive collaboration. These rules will be in force for the rest of the
semester.

You will need the data files we provide in hw6_files.zip, so be sure to download this file from
the Course Materials section of Submitty and unzip it into your directory for HW 6. The zip file
contains data files and example input / output for your program.

Problem Introduction

There are many software systems for analyzing the style and sophistication of written text and even
deciding if two documents were authored by the same individual. The systems analyze documents
based on the sophistication of word usage, frequently used words, and words that appear closely
together. In this assignment you will write a Python program that reads two files containing
the text of two different documents, analyzes each document, and compares the documents. The
methods we use are simple versions of much more sophisticated methods that are used in practice
in the field known as natural language processing (NLP).

Files and Parameters

Your program must work with three files and an integer parameter.

The name of the first file will be stop.txt for every run of your program, so you don’t need to
ask the user for it. The file contains what we will refer to as “stop words” — words that should be
ignored. You must ensure that the file stop.txt is in the same folder as your hw6_sol.py python
file. We will provide one example of it, but may use others in testing your code.

You must request the names of two documents to analyze and compare and an integer “maximum
separation” parameter, which will be referred to as max_sep here. The requests should look like

Enter the first file to analyze and compare ==> doc1.txt

doc1.txt

Enter the second file to analyze and compare ==> doc2.txt

doc2.txt

Enter the maximum separation between words in a pair ==> 2

2

Parsing

The job of parsing for this homework is to break a file of text into a single list of consecutive
words. To do this, the contents from a file should first be split up into a list of strings, where
each string contains consecutive non-white-space characters. Then each string should have all non-
letters removed and all letters converted to lower case. For example, if the contents of a file (e.g.,
doc1.txt) are read to form the string (note the end-of-line and tab characters)

s = " 01-34 can't 42weather67 puPPy, \r \t and123\n Ch73%allenge 10ho32use,.\n"

then the splitting should produce the list of strings

['01-34', "can't", '42weather67', 'puPPy,', 'and123', 'Ch73%allenge', '10ho32use,.']

and this should be split into the list of (non-empty) strings

['cant', 'weather', 'puppy', 'and', 'challenge', 'house']

Note that the first string, '01-34' is completely removed because it has no letters. All three files
— stop.txt and the two document files called doc1.txt and doc2.txt above — should be parsed
this way.

Once this parsing is done, the list resulting from parsing the file stop.txt should be converted
to a set. This set contains what are referred to in NLP as “stop words” — words that appear so
frequently in text that they should be ignored.

The files doc1.txt and doc2.txt contain the text of the two documents to compare. For each,
the list returned from parsing should be further modified by removing any stop words. Continuing
with our example, if 'cant' and 'and' are stop words, then the word list should be reduced to

['weather', 'puppy', 'challenge', 'house']

Words like and are almost always in stop lists, while cant (really, the contraction can't) is in some.
Note that the word lists built from doc1.txt and doc2.txt should be kept as lists because the
word ordering is important.

Analyze Each Document’s Word List

Once you have produced the word list with stop words removed, you are ready to analyze the word
list. There are many ways to do this, but here are the ones required for this assignment:

1. Calculate and output the average word length, accurate to two decimal places. The idea here
is that word length is a rough indicator of sophistication.

2. Calculate and output, accurate to three decimal places, the ratio between the number of
distinct words and the total number of words. This is a measure of the variety of language
used (although it must be remembered that some authors use words and phrases repeatedly
to strengthen their message.)

3. For each word length starting at 1, find the set of words having that length. Print the length,
the number of different words having that length, and at most six of these words. If for a
certain length, there are six or fewer words, then print all six, but if there are more than six
print the first three and the last three in alphabetical order. For example, suppose our simple
text example above were expanded to the list

['weather', 'puppy', 'challenge', 'house', 'whistle', 'nation', 'vest',

'safety', 'house', 'puppy', 'card', 'weather', 'card', 'bike',

'equality', 'justice', 'pride', 'orange', 'track', 'truck',

'basket', 'bakery', 'apples', 'bike', 'truck', 'horse', 'house',

'scratch', 'matter', 'trash']

Then the output should be

1: 0:

2: 0:

3: 0:

4: 3: bike card vest

5: 7: horse house pride ... track trash truck

6: 7: apples bakery basket ... nation orange safety

7: 4: justice scratch weather whistle

8: 1: equality

9: 1: challenge

4. Find the distinct word pairs for this document. A word pair is a two-tuple of words that
appear max_sep or fewer positions apart in the document list. For example, if the user input
resulted in max_sep == 2, then the first six word pairs generated will be:

('puppy', 'weather'), ('challenge', 'weather'),

('challenge', 'puppy'), ('house', 'puppy'),

('challenge', 'house'), ('challenge', 'whistle')

Your program should output the total number of distinct word pairs. (Note that ('puppy', 'weather')

and ('weather', 'puppy') should be considered the same word pair.) It should also output
the first 5 word pairs in alphabetical order (as opposed to the order they are formed, which
is what is written above) and the last 5 word pairs. You may assume, without checking, that
there are enough words to generate these pairs. Here is the output for the longer example
above (assuming that the name of the file they are read from is ex2.txt):

Word pairs for document ex2.txt

54 distinct pairs

apples bakery

apples basket

apples bike

apples truck

bakery basket

...

puppy weather

safety vest

scratch trash

track truck

vest whistle

5. Finally, as a measure of how distinct the word pairs are, calculate and output, accurate to
three decimal places, the ratio of the number of distinct word pairs to the total number of
word pairs.

Compare Documents

The last step is to compare the documents for complexity and similarity. There are many possible
measures, so we will implement just a few.

Before we do this we need to define a measure of similarity between two sets. A very common
one, and the one we use here, is called Jaccard Similarity. This is a sophisticated-sounding name
for a very simple concept (something that happens a lot in computer science and other STEM
disciplines). If A and B are two sets, then the Jaccard similarity is just

J(A,B) = |A ∩ B)|
|A ∪ B)|

. (1)

In plain English it is the size of the intersection between two sets divided by the size of their union.
As examples, if A and B are equal, J(A,B) = 1, and if A and B are disjoint, J(A,B) = 0. As a
special case, if one or both of the sets is empty the measure is 0. The Jaccard measure is quite easy
to calculate using Python set operations.

Here are the comparison measures between documents:

1. Decide which has a greater average word length. This is a rough measure of which uses more
sophisticated language.

2. Calculate the Jaccard similarity in the overall word use in the two documents. This should
be accurate to three decimal places.

3. Calculate the Jaccard similarity of word use for each word length. Each output should also
be accurate to three decimal places.

4. Calculate the Jaccard similarity between the word pair sets. The output should be accurate
to four decimal places. The documents we study here will not have substantial similarity of
pairs, but in other cases this is a useful comparison measure.

See the example outputs for details.

Notes

• An important part of this assignment is to practice with the use of sets. The most complicated
instance of this occurs when handling the calculation of the word sets for each word length.
This requires you to form a list of sets. The set associated with entry k of the list should be
the words of length k.

• Sorting a list or a set of two-tuples of strings is straightforward. (Note that when you sort
a set, the result is a list.) The ordering produced is alphabetical by the first element of the
tuple and then, for ties, alphabetical by the second. For example,

>>> v = [('elephant', 'kenya'), ('lion', 'kenya'), ('elephant', 'tanzania'), \

('bear', 'russia'), ('bear', 'canada')]

>>> sorted(v)

[('bear', 'canada'), ('bear', 'russia'), ('elephant', 'kenya'), \

('elephant', 'tanzania'), ('lion', 'kenya')]

• Submit just a single Python file, hw6_sol.py.

• A component missing from our analysis is the frequency with which each word appears. This
is easy to keep track of using a dictionary, but we will not do that for this assignment. As
you learn about dictionaries think about how they might be used to enhance the analysis we
do here.

Document Files

We have provided the example described above and we will be testing your code along with several
other documents (few of them are):

• Elizabeth Alexander’s poem Praise Song for the Day.

• Maya Angelou’s poem On the Pulse of the Morning.

• A scene from William Shakespeare’s Hamlet.

• Dr. Seuss’s The Cat in the Hat

• Walt Whitman’s When Lilacs Last in the Dooryard Bloom’d (not all of it!)

All of these are available full-text on-line. See poetryfoundation.org and learn about some of
the history of these poets, playwrites and authors.

poetryfoundation.org

