
CSCI 1100 — Computer Science 1 Homework 3
Loops, Tuples, Lists, and Ifs

Overview

This homework is worth 100 points toward your overall homework grade, and is due Thursday,
February 15th, 2024 at 11:59:59 pm. You have 1 week to finish this assignment.

The goal of this assignment is to work with lists, loops, tuples and use if statements. As your
programs get longer, you will need to develop some strategies for testing your code. Here are a few
simple ones: start testing early, and test small parts of your program by writing a little bit and
testing. We will walk you through program construction in the homework description and provide
some ideas for testing.

As always, make sure you follow the program structure guidelines. You will be graded on program
correctness as well as good program structure. This includes comments. Minimally, we expect
a brief docstring comment block at the start of the submission detailing the purpose and a brief
summary (you may also include additional information like your name and date); and docstring
comments for each function you define detailing the purpose, inputs, and expected return values.
Additional comments have to accompany any complicated sections of your code.

Fair Warning About Excess Collaboration

Please remember to abide by theCollaboration Policy you were given last assignment. It remains
in force for this and all assignments this semester. We will be using software that compares
all submitted programs, looking for inappropriate similarities. This handles a wide variety of
differences between programs, so that if you either (a) took someone else’s program, modified it
(or not), and submitted it as your own, (b) wrote a single program with one or more colleagues
and submitted modified versions separately as your own work, or (c) submitted (perhaps slightly
modified) software submitted in a previous year as your software, this software will mark these
submissions as very similar. All of (a), (b), and (c) are beyond what is acceptable in this course —
they are violations of the academic integrity policy. Furthermore, this type of copying will prevent
you from learning how to solve problems and will hurt you in the long run. The more you write
your own code, the more you learn.

Make sure that you have read the Collaboration Policy for acceptable levels of collaboration and
so you know how you can protect yourself. The document can be found on the Course Materials
page on Submitty. Penalties for excess collaboration can be as high as:

• 0 on the homework, and

• an additional overall 5% reduction on the semester grade.

Penalized students will also be prevented from dropping the course. More severe violations, such
as stealing someone else’s code, will lead to an automatic F in the course. A student caught in a
second academic integrity violation will receive an automatic F.

By submitting your homework you are asserting that you both (a) understand the academic integrity
policy and (b) have not violated it.

Finally, please note that this policy is in place for the small percentage of problems that will arise
in this course. Students who follow the strategies outlined above and use common sense in doing
so will not have any trouble with academic integrity.

Part 1: How complex is the language used in the text? (40 pts)

Create a folder for HW 3. Download the zip file hw3_files.zip from the Course Materials on
Submitty. Put it in this folder and unzip it. You should see a file named syllables.py which will
be a helper module for this homework. Write your program in the same folder as this file and name
it hw3_part1.py.

A few things to get familiar with before solving this part.

In this part, you must get familiar with a function called .split() that takes a piece of text, and
converts it to a list of strings. Here is an example run:

>>> l i n e = ”Ci tade l Morning News . News about the Ci tade l \
in the morning , pre t ty s e l f exp lanatory . ”
>>> m = l i n e . s p l i t ()
>>> m
[' Citade l ' , 'Morning ' , 'News . ' , 'News ' , ' about ' , ' the ' ,\
' Citade l ' , ' in ' , ' the ' , 'morning , ' , ' pretty ' , ' s e l f ' , ' exp lanatory . ']

You will also need to use the function find_num_syllables() from the file syllables.py which
takes as input an English word as a string and that returns the total number of syllables in that
word as an integer. The module works even if the word has punctuation symbols, so you do not need
to remove those explicitly. Make sure you import this module appropriately into your program.

>>> f i n d num sy l l ab l e s (' computer ')
3
>>> f i n d num sy l l ab l e s (' s c i ence ')
1
>>> f i n d num sy l l ab l e s (' i n t roduct i on ')
4

Clearly, the second result is incorrect. The module we provided is not a perfect implementation
of syllable counting, so you may find errors. It is not your job to fix them, use the module as it
is, with errors and all. Do not worry about the mistakes it makes. To properly compute this, we
would need to use a Natural Language Processing (NLP) module like NLTK, which we have not
installed in this course.

2

Problem specification.

In this part, you will read a paragraph containing multiple English sentences as text from the user.
Assume a period marks the end of a sentence. Read the paragraph as a single (long) line of text.
Compute and print the following measures corresponding to the overall readability of this text.

• ASL (average sentence length) is given by the number of words per sentence. Print ASL.

• PHW (percent hard words): To compute this first count the number of words of three or more
syllables that do not contain a hyphen (-) and three-syllable words that do not end with 'es'

or ed. Divide this count by the total number of words in the text and multiply the result by
100 to get a percentage. Print PHW.

• Collect all words that are used in the PHW computation in a list exactly as they appear in the
input, and print this list.

• ASYL (average number of syllables) is given by the total number of syllables divided by the
total number of words. Print ASYL.

• GFRI is given by the formula 0.4*(ASL + PHW). Print GFRI.

• FKRI is given by the formula 206.835-1.015*ASL-86.4*ASYL. Print FKRI.

Note that the measures GFRI and FKRI are slightly modified versions of well-known readability
measures named Gunning-Fog and Flesch Kincaid. In Gunning-fog, the higher the value calculated,
the more difficult it is to read a text. For Flesch Kincaid it is the opposite with higher values
indicating more easily read text.

You can find example runs of the program in hw3_part1_01.txt and hw3_part1_02.txt from
hw3_files.zip

When you are finished, submit your program to Submitty as hw3_part1.py. You must use this
filename, or your submission will not work in Submitty. You do not have to submit any of the files
we have provided.

Part 2: Pikachu in the Wild! (40 pts)

Suppose you have a pikachu that is standing in the middle of an image, at coordinates (75, 75).
Assume the top left corner of the board is (0,0) like in an image.

We are going to walk a pikachu around the image looking for other pokemon. This is a type of
simple simulation. First, we will set the parameters of the simulation by asking the user for the
number of turns, to run the simulation (starting at turn 0), the name, of your pikachu and how
often, we run into another pokemon. At this point we enter a simulation loop (while). Your
pikachu walks 5 steps per turn in one of (N)orth, (S)outh, (E)ast or (W)est. Every turn, ask the
user for a direction for your pikachu to walk and move your pikachu in that direction. You should
ignore directions other than N, S, E, W. Every often turns, you meet another pokemon. Ask the

3

user for a type ((G)round or (W)ater). If it is a ground type, ’G’, your pikachu loses. It turns
and runs 10 steps in the direction opposite to the direction in which it was moving before it saw
another pokemon. (If the last direction was not a valid direction, your pikachu doesn’t move.) If
it is a water type, ’W’, your pikachu wins and takes 1 step forward. Anything else means you did
not actually see another pokemon. Keep track of wins, losses, and "No Pokemon" in a list.

At the end of turn turns report on where your pikachu ended up and print out its record.

You must implement at least one function for this program:

move_pokemon((row, column), direction, steps)

that returns the next location of the pikachu as a (row, column) tuple. There is a fence along
the boundary of the image. No coordinate can be less than 0 or greater than 150. 0 and 150 are
allowed. Make sure your move_pokemon() function does not return positions outside of this range.

You can use the following code to test your move_pokemon() function. Feel free to write other
functions if you want, but be sure to test them to make sure they work as expected!

from hw3 part2 import move pokemon
row = 15
column = 10
print (move pokemon ((row , column) , 'n ' , 20)) # shou ld p r i n t (0 , 10)
print (move pokemon ((row , column) , ' e ' , 20)) # shou ld p r i n t (15 , 30)
print (move pokemon ((row , column) , ' s ' , 20)) # shou ld p r i n t (35 , 10)
print (move pokemon ((row , column) , 'w ' , 20)) # shou ld p r i n t (15 , 0)
row = 135
column = 140
print (move pokemon ((row , column) , 'N ' , 20)) # shou ld p r i n t (115 , 140)
print (move pokemon ((row , column) , 'E ' , 20)) # shou ld p r i n t (135 , 150)
print (move pokemon ((row , column) , 'S ' , 20)) # shou ld p r i n t (150 , 140)
print (move pokemon ((row , column) , 'W' , 20)) # shou ld p r i n t (135 , 120)

Now, write some code that will call these functions for each command entered and update the
location of the pikachu accordingly.

Two examples of the program run (how it will look when you run it using Spyder IDE) are provided
in files hw3_part2_01.txt and hw3_part2_02.txt (can be found inside the hw03_files.zip file).
In hw3_part2_01.txt, note that f is an invalid direction, so it has no effect on the pikachu’s state,
and r is an invalid pokemon type which gets flagged as a "No Pokemon" in the results list.

We will test your code with the values from the example files as well as a range of other values. Test
your code well and when you are sure that it works, please submit it as a file named hw3 part2.py
to Submitty for Part 2 of the homework.

4

Part 3: Population Change — with Bears (20 pts)

You are going to write a program to compute a type of population balance problem similar to the
bunnies and foxes you computed in Lab 3. This problem will have bears, berry fields, and tourists.
We will just use the word berries to mean the area of the berry fields. We will count the number
of bears and tourists, as well.

Bears need a lot of berries to survive and get ready for winter. So the area of berry fields is a
very important part for their population. Berry fields in general spread over time, but if they are
trampled too heavily by bears, then they may stop growing and may reduce in size. Tourists are the
worst enemy of bears, often habituating them to humans and causing aggressive behavior. Sadly,
this can lead to bears being killed to avoid risk to human life.

Here is how the population of each group is linked to one another from one year to the next.
Suppose the variable bears stores the number of bears in a given year and berries stores the area
of the berry fields.

• The number of tourists in a given year is determined as follows. If there are less than 4 or
more than 15 bears, there are no tourists. It is either not interesting enough or too dangerous
for them.

In other cases, there are 10,000 tourists for each bear up to and including 10 and then 20,000
tourists for each additional bear. It is a great idea to write a function for computing tourists
and test it separately.

• The number of bears and berries in the next year is determined by the following formulas
given the population of bears, berries, and tourists in the given year:

bears_next = berries/(50*(bears+1)) + bears*0.60 - (math.log(1+tourists,10)*0.1)

berries_next = (berries*1.5) - (bears+1)*(berries/14) - \

(math.log(1+tourists,10)*0.05)

Remember none of these values can end up being negative. Negative values should be clipped
to zero. Also, bears and tourists are integers. The log function is in the math module.

You must write a function that takes as input the number of bears, berries, and tourists in a
given year and returns the next year’s bears population and berry field area as a tuple.

>>> f i nd nex t (5 , 1000 , 40000)
(5 , 1071.1984678861438)

Then write the main program that reads two values, the current population of bears, and the area of
berry fields. Your program then finds and prints the population of all three groups (bears, berries,
and tourists) for the first year and another 9 years (10 years total). You must use a loop to do
this. The output is formatted such that all values are printed in columns and are aligned to the
left within each column. The width of each column is exactly 10 characters (padded with spaces,
if necessary). All floating point values need to be printed with exactly one decimal place.

5

Once completed, your program should output: the smallest and largest values of the population of
bears, berries, and tourists reached in your computation. These values should be output using the
same formatting rules as for the population values for each of the years.

An example of the program run (how it will look when you run it using the Spyder IDE is provided
in file hw3_part3_01.txt (can be found inside the hw03_files.zip file). Note that the number of
bears may go down to zero and then come back up. Why? Bears from neighboring areas can move
in. The min and max values for each of bears, berries, and tourists may come from different years.

We will test your code with the values from the example file as well as a range of other values. Test
your code well and when you are sure that it works, please submit it as a file named hw3 part3.py
to Submitty for Part 3 of the homework.

6

